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ABSTRACT

This paper proposes an adaptive tree-based cost aggregation
strategy for stereo matching. The previous tree-based algo-
rithms [1, 2], hindered by the greediness of minimum span-
ning tree (MST), provide poorly adaptive support windows
and have bad performance on curved and slanted surfaces.
The proposed method incorporates randomness and over-
comes these drawbacks by introducing loop-erased random
walk (LERW) into tree construction. Experimental results
over Middlebury dataset [3, 4] demonstrate that our LERW-
based strategy outperforms other tree-based state-of-the-art
strategies in most of the high resolution test cases. Three con-
tributations are included: 1) a LERW-based cost aggregation
strategy; 2) a LERW-based refinement method; 3) mathemat-
ical analysis of the adaptability of our support windows.

Index Terms— Loop-erased random walk, adaptive sup-
port window, tree-based cost aggregation, stereo matching

1. INTRODUCTION

Depth estimation is one of the foundational tasks in stereo
vision. It recovers depth information between corresponding
pixels in a pair of stereo images based on their visual dispari-
ties. Many binocular stereo matching algorithms have been
proposed to achieve accurate disparity maps among which
the cost aggregation based methods are the most widely-used
ones [1, 2, 5, 6, 7, 8, 9, 10]. They generally consist of four
steps: 1) matching cost computation, where the similarity of
corresponding pixels is assigned to each pixel for all possible
disparities; 2) cost aggregation, where the matching cost is
aggregated over a support window around each pixel; 3) dis-
parity computation, where an optimal disparity with the low-
est aggregated cost for each pixel is selected; 4) refinement,
which further improves the accuracy of inaccurate disparities.

According to recent researches, the performance of the
aggregation-based methods is highly dependent on the sup-
port window. Regular windows of fixed or variable shape [5,
11] are demonstrated to be very efficient. Alternatively, shift-
able support windows [11] can also be used. Zhang proposes
a cross-based method [6, 9] that can construct aggregation
windows in arbitrary shapes. However, these support win-
dows are not adaptive enough to fit sharp depth discontinuities

while staying large in ambiguous regions. Yang adopts a non-
local aggregation strategy [1] by aggregating matching cost
on a MST. Based on the MST structure, segment-tree (ST) [2]
further incorporates the segmentation technique. These tree-
based algorithms can freely extend the support window by
joining pixels of similar colors. However, the extreme greed-
iness of MST causes poor performance in large areas with
similar colors but various disparities since pixels are joined
too close to discern their disparity differences.

The drawbacks of such greediness in the tree-based strate-
gies motivate us to incorporate randomness in the tree struc-
ture. The loop-erased random walk (LERW) based algorithm,
proposed in this paper, manages to generate an even more
adaptive support window with finer discrimination. This new
support window is closer to the ideal one because it can deal
with both depth discontinuities and ambiguous regions by
modifying itself according to the local image content. The
support window is even smaller near the boundary while
remaining large inside the less-textured regions.

The rest of the paper is organized as follows. Section 2
details the proposed LERW-based algorithm, followed by the
mathematical analysis in Section 3. Section 4 evaluates the
experimental results. Finally, section 5 gives conclusions.

2. LERW-BASED ALGORITHM

2.1. LERW-based cost aggregation

This section details the proposed LERW-based cost aggrega-
tion strategy. Similar to other tree-based algorithms [1, 2, 12],
the reference image is represented as an undirected graph G
of the standard 4-connected grid. The aggregation phase con-
sists of two steps: tree construction and cost aggregation.

Tree construction: Loop-erased random walk is a ran-
dom simple path which erases all the loops of the random
walk in chronological order. In this step, we adopt Wilson’s
Algorithm [13] to connect all the vertices in graph G with
LERWs, as summarized in Algorithm 1. It repeatedly adds
new LERW and output a uniform spanning tree (UST), which
is a random spanning tree chosen among all the possible span-
ning trees of graph G with equal probability.

Cost aggregation: Define the weight of an edge (s, r) as:

w(s, r) = |I(s)− I(r)| , (1)



input : A connected undirected graph G
output: A uniform spanning tree Tree

1 Randomly pick a vertex x, put x in Tree;
2 repeat

3 Randomly pick a vertex y that is not in Tree;
4 Path← random walk from y until the walk hits a

vertex in Tree;
5 LERW← EraseLoop(Path);
6 Add LERW to Tree;

7 until all vertices are in Tree;

Algorithm 1: LERW based Tree Construction

where I(s) and I(r) are the intensity values of vertex s and
r in the graph. Therefore, the weight of the path from pixel
p to q along UST is D(p, q) =

∑

(s,r)∈path(p,q) w(s, r). Like
other tree-based algorithms [1, 2], the similarity S(p, q) be-
tween pixel p and q is defined as:

S(p, q) = e−D(p,q)/δ, (2)

where δ is a constant to adjust the similarity. As is explained
in [1], the joint bilateral filter, which has been proved in the
prior work [10] to be reasonably accurate in cost aggregation,
can be directly extended to the tree structure: the aggregated
cost C(p, d) for p at disparity label d is defined as:

C(p, d) =
∑

q∈G

S(p, q) ·M(q, d), (3)

where M(q, d) represents the pixel-wise matching cost for
q at disparity label d, as defined in [7]. Then a linear time
exact algorithm in [1] is implemented to compute the overall
aggregated matching cost C for each pixel over the UST.

Remark. According to Eq. 2 and Eq. 3, S(p, q) will be-
come extremely low if p and q are far away from each other on
the UST or they have large color difference. It means that for
each pixel p, only pixels inside a neighboring region, where
D(p, q) is relatively small, provide supports to it. This spe-
cific region is denoted as the “support window” of p.

Finally, a winner-takes-all (WTA) strategy is applied to
select the disparity label d that minimizes the overall aggre-
gated cost C(p, d) for each pixel as its disparity:

D(p) = argmin
d

C(p, d). (4)
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Fig. 1. Partial enlarged results of Venus[11]

2.2. LERW-based refinement

This section proposes a new refinement method via LERW.
The LERW-based cost aggregation is initially performed
within the left and right images and generates raw left and
right disparity maps Dl and Dr. The stable pixels are then
found by left-to-right consistency check [14]. Figure 1a
presents the partial enlarged raw disparity map of Venus in
[11] where we can clearly find jagged edges near boundary.
Our observation is that it is caused by the large-weighted
edges from the unstable pixels in the original UST which is
built in tree construction. It motivates us to reorganize the
UST to weaken the influence by those edges.

Reorganize UST: To rebuild the UST, we first remove
those undesirable edges from the original graph G. let {r, r′}
be the set of the two vertices right to and beneath the vertex
s. An edge (s, r) is undesirable if the vertex s is unstable
and w(s, r) ≥ w(s, r′). After removing undesirable edges,
the new graph G′ is likely to become a disconnected graph
with several connected components. Therefore, we apply Al-
gorithm 1 to rebuild a UST in each connected component in-
dependently and obtain a forest.

Refine along reorganized UST: A similar technique as
other tree-based refinements is implemented [1, 2] along the
reorganized UST. As proposed in [1], the new matching cost,

M ′(p, d) =

{

d−Dl(p) p is stable
0 otherwise

, (5)

is updated for each pixel at all disparities. The same approach
introduced in Sec.2.1 is applied to aggregate the new match-
ing cost to propagate disparities from stable pixels to unstable
ones along the reorganized UST. Compared with tree-based
refinements [1, 2], the aggregation in LERW-based refine-
ment runs in each connected component indepdently. Finally,
the disparity that minimizes the aggregated matching cost is
selected as the final disparity for each pixel.

Figure 1b-1c compare the disparity maps refined by ag-
gregatingM ′ along the original UST with the one by LERW-
based refinement along the reorganized UST. As shown in
Fig.1c, LERW-based refinement significantly improves the
accuracy near the boundary and removes jagged edges.

3. ANALYSIS OF LERW-BASED AGGREGATION

This section quantitatively evaluates the adaptability in our
LERW-based cost aggregation. In the MST-based algorithms
[1, 2], after building a spanning tree from the reference im-
age, each monochromatic region will be partitioned into sev-
eral connected components, denoted as “support blocks”, see
areas of the darkest green in Fig.2. As remarked in Sec.2.1,
the support blocks that provide support to a pixel form its sup-
port window, see the green areas in Fig.2 where darker green
indicates larger support. The MST-based algorithms [1, 2],
greedily select the edge with the minimum weight to connect
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Fig. 2. Support blocks of a toy example via MST and LERW.
The maze-like lines show how the trees are connected.

the blocks. It results in a large support window containing ex-
cessive monochromatic regions that may vary in disparities.

On the other hand, the LERW-based strategy incorporates
randomness. It weakens the greediness near depth discontinu-
ities while keeping large support windows inside less-textured
regions. Consider the toy example in Fig.2, an h×(3w) image
partitioned into three h×w monochromatic regions, L,M,R,
where h = 40 and w = 13. The support block of MST is
always the entire monochromatic region whether or not the
vertex (the black pixel) is on the boundary, see Fig.2a-2b. The
support blocks of the LERW-based strategy, however, vary in
size, see Fig.2c-2d. The following part analyzes the expected
size of support blocks by estimating a lower bound to it.

Support window adaptability: Let B be the support
block containing a vertex v in the middle region M of the toy
example. |B| is the size of B. We’ll show that a lower bound
to the expected size of B, E[|B|], is as plotted in [fig].

To simplify the problem, we adopt the model of Aldous-
Broder algorithm[15], which can also output a UST. It runs
a random walk (Rn) until it covers all the vertices, where
Rn is the vertex hit by the random walk at the nth step. An
edge (Rn−1, Rn) is put into the tree if the vertex Rn is hit for
the first time at step n. E[|B|] keeps the same whatever the
choice of R1 since the distribution of the output tree remains
unchanged. Therefore, to evaluate the support block of v, we
instead consider a random walk (Rn) starting at v (R1 = v)
and stopping once it escapes from M. Let Tv be the subtree
constructed by running Aldous-Broder on (Rn) and |Tv| be
the size of Tv , i.e. |Tv| is incremented by one every time
(Rn) hits a new vertex. So

|B| ≥ |Tv|⇒ E[|B|] ≥ E[|Tv|]. (6)

For each vertex u, we define: X(v)
u = 1 if u ∈ Tv , and

X(v)
u = 0 otherwise. Then |Tv| =

∑

u∈M
X(v)

u . Let cL be
the rightmost column of L and cR be the leftmost column of

R. Then E[X(v)
u ] = Pr[u ∈ Tv] = Pr[u is hit by (Rn)] =

Pr[(Rn) hits u before hitting cL or cR]. [16] relates the volt-
age of an electric network with such probability:
Consider an electric network with conductance Cxy on each
edge (x, y), (Cxy = Cyx), and a random walk on the same
underlying graph with the probability for a step from x to y
pxy = Cxy/Cx, where Cx =

∑

y∼x Cxy (y ∼ x if y is ad-
jacent to x). Let vx be the voltage of vertex x. Choose two
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Fig. 3. Mathematical and statistical results of the toy example.

vertices a and b from the electric network and assign va = 1
and vb = 0. Then we have

∀x,Pr[the random walk from x hits a before b] = vx.

So, to evaluate E[X(v)
u ], we assign the voltage of vertices in

cL and cR to be 0, the voltage of u to be 1 and Cxy to be
1 ∀ edge (x, y). Define the voltage of vertex v in this circum-

stance as v(u)v . We have E[X(v)
u ] = v(u)v and

E[|Tv|] =
∑

u∈M

E[X(v)
u ] =

∑

u∈M

v(u)v . (7)

We’ve obtained the numeric results of E[|Tv|] by solving
the voltages. Fig.3a depicts the E[|Tv|]’s along the middle
row of M (h = 40, w ∈ {7, 13, 19}). Fig.3b displays the
E[|Tv|]’s for all vertices v ∈ M of the toy example. The line
chart in Fig.3c summarizes the statistical results over 10,000
experimental sets for pixels in the two columns in the middle
and near the boundary of M. Each point in the line chart in-
dicates the proportion of pixels in support blocks of different
sizes (scaled to [0, 1]). In summary, Fig.3a-3c all imply that
our support blocks are small near the boundary while large
inside the monochromatic regions, which well exhibits the
adaptability. This finer discrimination in support blocks not
only results in better accuracy and stronger adaptability, but
also overcomes the greediness of MST-based methods [1, 2]
especially over curved/slanted surfaces, see results in Sec.4.

4. EXPERIMANTAL RESULTS

This section demonstrates that our strategy outperforms other
tree-based methods especially over high resolution images in
the Middlebury [3, 4], which is the most widely-used dataset
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Non-occluded error rate (%) (error ≥ 1.0)

Test Case MST[1] ST[2] LERW-1 LERW-2

Aloe 12.11 10.31 9.42±0.10 7.90±0.09

Baby1 18.96 11.94 9.06±0.24 7.65±0.20

Baby2 35.44 34.48 31.07±0.39 24.67±0.28

Baby3 17.86 12.41 11.14±0.32 10.72±0.20

Bowling1 41.02 39.64 36.76±0.62 30.60±0.44

Bowling2 30.27 28.78 24.38±0.31 18.66±0.24

Cloth1 4.17 2.97 1.99±0.03 1.14±0.03

Cloth2 17.69 13.27 11.81±0.22 7.62±0.09

Cloth3 8.03 6.42 4.87±0.09 2.98±0.07

Cloth4 7.74 5.61 4.36±0.11 2.78±0.05

Flowerpots 45.72 38.71 35.65±0.34 32.11±0.37

Lampshade1 25.99 26.21 19.14±0.49 18.13±0.55

Lampshade2 31.14 34.76 28.61±0.83 26.69±0.79

Midd1 40.44 44.67 47.18±1.18 52.17±0.74

Midd2 40.85 45.36 42.22±1.79 45.81±0.71

Monopoly 51.99 36.81 47.16±2.63 46.53±1.01

Plastic 58.06 55.29 51.33±1.75 52.03±1.22

Rocks1 23.51 22.26 21.34±0.25 20.83±0.11

Rocks2 12.05 9.79 8.20±0.12 6.45±0.11

Wood1 23.02 14.58 15.84±0.22 12.41±0.16

Wood2 11.94 18.26 16.46±0.48 11.71±0.28

Avg. 26.57 24.41 22.76±0.20 20.93±0.10

Table 1. Quantitative evaluation of the three algorithms on
large resolution images from Middlebury [3, 4]. LERW-1:
LERW-based aggregation + refinement in MST [1]; LERW-
2: LERW-based aggregation + LERW-based refinement.

for stereo matching. We compare our approach against the
following state-of-the-art algorithms: the MST aggregation
(denoted as MST [1] and the enhanced ST aggregation (de-
noted as ST) [2]. They both include the refinements proposed
in their papers. Throughout all experiments we set δ = 0.1.

Support windows on curved/slanted surfaces: We se-
lect several test images fromMiddlebury [3, 4] that have large
curved or slanted surfaces for visual comparison, which are
Baby1, Bowling2 and Wood1 (resolution: 620 ∼ 686× 555).
Fig.4b-4c display the disparity maps using MST [1] and
LERW-based strategies. Pixels with erroneous disparities (er-
ror > 1.0) are marked in red and pixels in occluded regions
are marked in black. The blue boxes highlight where LERW
obtains considerably higher accuracy over MST [1] due to
the gradual color change on the slanted and curved surfaces.
Fig.4d-4e depict the support window of a selected pixel in the
blue box using different strategies where darker red indicates
larger support. The support window of MST [1] is too large,
see Fig.4d, and therefore, the disparity calculated is quite flat.
In contrast, LERW can produce a reasonably large support
window which well detects the disparity change.

Performance on Middlebury dataset: To quantitively
evaluate the performance, we test three tree-based meth-
ods on the 21 high resolution test cases (resolution: 620 ∼
698 × 555) from Middlebury 2006 dataset [3, 4]. Table 1

(a)

(b)

(c)

(d)

(e)

Fig. 4. Results on Baby1, Bowling2 and Wood1. (a) Left
images; (b) disparity maps of MST [1]; (c) disparity maps of
LERW; (d) partial enlarged support windows (in red) of MST
[1]; (e) partial enlarged support windows (in red) of LERW.

compares the performance of MST [1], ST [2], LERW-based
aggregation with the refinement in [1] and with the LERW-
based refinement. It displays the percentages of erroneous
pixels in non-occluded regions. First, LERW-based aggre-
gation achieves the lowest average error rate, which is about
5.6% lower than MST [1] and 3.5% lower than ST [2]. Sec-
ond, among 21 test cases, LERW-based aggregation achieves
the highest accuracy in 17 test cases. In particular, its error
rate is over 10% lower than MST [1] or ST [2] aggregation
strategies after refinement in the 7 test cases in bold font
in Table 1. Third, the accuracy is improved by using the
LERW-based refinement instead of the refinement in [1].

5. CONCLUSIONS

An adaptive tree-based cost aggregation strategy as well as
a novel refinement method via LERW are proposed. The
new algorithm incorporates randomness into tree construc-
tion and is demonstrated to provide more adaptive support
window than other tree-based methods [1, 2] according to the
mathematical analysis. Moreover, the proposed cost aggre-
gation strategy shows leading performance in a large number
of Middlebury test cases [3, 4] and it is demonstrated to be
highly effective in the curved and slanted surfaces.
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